Shell and ligand-dependent blinking of CdSe-based core/shell nanocrystals.
نویسندگان
چکیده
Blinking of zinc blende CdSe-based core/shell nanocrystals is studied as a function of shell materials and surface ligands. CdSe/ZnS, CdSe/ZnSe/ZnS and CdSe/CdS/ZnS core/shell nanocrystals are prepared by colloidal synthesis and six monolayers of larger bandgap shell materials are grown over the CdSe core. Organic-soluble nanocrystals covered with stearate are made water-soluble by ligand exchange with 3-mercaptopropionic acid. The light-emitting states of nanocrystals are characterized by absorption and emission spectroscopy as well as photoluminescence lifetime measurements in solution. The blinking time trace is recorded for single nanocrystals on a glass coverslip. Both on- and off-time distributions are fitted to the power law. The power-law exponents vary, depending on shell materials and surface ligands. The off-time exponents for organic and water-soluble nanocrystals are measured in the range of 1.36-1.55 and 1.25-1.37, respectively, while their on-time exponents are spread in the range of 1.53-1.86 and 1.85-2.17, respectively. Water-soluble surface passivation with thiolate prolongs the dark period regardless of shell materials and core/shell structures. Of the core/shell structures, CdSe/CdS/ZnS exhibits the longest bright state. The on/off-time exponents are inversely correlated, although the successive on/off events are not individually correlated. A two competing charge-tunneling model is presented to describe the variation of on- and off-time exponents with shell materials and surface ligands.
منابع مشابه
Ligand-dependent blinking of zinc-blende CdSe/ZnS core/shell nanocrystals.
Blinking of zinc-blende CdSe/ZnS core/shell nanocrystals are studied as a function of surface passivating ligands. Organic-soluble CdSe/ZnS core/shell nanocrystals are prepared by colloidal synthesis free of trioctylphosphine oxide and converted into water-soluble ones by ligand exchange with three different hydrophilic thiols, 2-aminoethanethiol, 3-mercapto-1-propanol, and 3-mercaptopropionic ...
متن کاملSurface states in the photoionization of high-quality CdSe core/shell nanocrystals.
We use electric force microscopy (EFM) to study single nanocrystal photoionization in two classes of high-quality nanocrystals whose exciton luminescence quantum yields approach unity in solution. The CdSe/CdS/ZnS core/shell nanocrystals do not photoionize, while the CdSe/CdS nanocrystals do show substantial photoionization. This verifies the theoretical prediction that the ZnS shell confines t...
متن کاملContinuously Tunable Emission in Inverted Type-I CdS/ CdSe Core/Crown Semiconductor Nanoplatelets
nanoribbons, [ 10 ] and most recently nanoplatelets (NPLs) [ 11 ] have been successfully synthesized. In these solution-processed quantum structures, an additional epitaxial growth of semiconductor shell around the starting semiconductor core leads to various architectures of nanocrystal heterostructures. By doing so, physical properties can be elegantly modifi ed with precisely controlling dis...
متن کاملFluorescence blinking statistics from CdSe core and core/shell nanorods.
We report fluorescence blinking statistics measured from single CdSe nanorods (NRs) of seven different sizes with aspect ratios ranging from 3 to 11. This study also included core/shell CdSe/ZnSe NRs and core NRs with two different surface ligands producing different degrees of surface passivation. We compare the findings for NRs to our measurements of blinking statistics from spherical CdSe co...
متن کاملBlinking Statistics and Excitation-Dependent Luminescence Yield in Si and CdSe Nanocrystals
Blinking is a phenomenon observed in single quantum emitters, which reduces their overall light emission. Even though it seems to be a fundamental property of quantum dots (QDs), substantial differences can be found in the blinking statistics of different nanocrystals. This work compares the blinking of numerous single, oxide-capped Si nanocrystals with that of CdSe/ZnS core-shell nanocrystals,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 12 32 شماره
صفحات -
تاریخ انتشار 2010